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Abstract. In the paper hedging of the European option in a discrete time
financial market with proportional transaction costs is studied. It is shown
that for a certain class of options the set of portfolios which allow to hedge an
option in a discrete time model with a bounded set of possible changes in a
stock price is the same as the set of such portfolios, under assumption that the
stock price evolution is given by a suitable CRR model.
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1 Introduction

In the paper we consider the problem of hedging of the European option in a
discrete time market model.

Although the problem of hedging of contingent claims in discrete time
under proportional transaction costs was studied in many papers (see [1]-[12])
it appears to be nontrivial to apply to the real market the results which were
obtained for a general model (see [3], [4], [11]). From calculation point of view
a so called Cox-Ross-Rubinstein (CRR) model is very convenient since in this
particular model it is easy to get the exact value of the price of an option as
well as the set of portfolios which allow to hedge the option (see for instance
[1], [2], [9], [10]). On the other hand the Cox-Ross-Rubinstein model seems to
be too simple to be a proper description of the real stock price evolution. In
this paper however it is shown that for a special class of options which
includes popular call option the set of portfolios which allow to hedge a
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contingent claim in a quite general model of the stock price process is the
same as in the Cox-Ross-Rubinstein model. The result therefore seems to be
interesting for practitioners since it justifies the use of the CRR model ap-
proach to price derivatives for a certain class of options. The possibility of
reducing of the model of a stock price movement to the binomial model in
case of the problem of hedging of the European option for the market with no
transaction costs was considered in [5], [8] and [12].

2 The model

Let (Q,F,P) be a probability space, T a positive natural number and
{Ft=0,...,T}a family of g-algebras such that 7y = {0, Q}, F, C F,,, for
t=0,...,7T—1and Fy = F. We assume that Q is finite (except Subsection
4.2).

Throughout this paper equalities and inequalities depending on w € Q if
not stated otherwise hold for all w € Q.

We consider a market with two assets, a risky stock and a riskless bond
and assume that all assets are infinitely divisible.

The stock price movement is modelled by the process {S,,t=0,...,T}
where S, denotes the price of the stock at time ¢, for t =0, ..., T. We assume
that S; is F; measurable for t =0,...,T.

In our model the stock price process satisfies the following recursive for-
mula:

S =0 +n,41)S, t=0,....,T—1

where Sy > 0 and {#,},_, 7 is a sequence of i.i.d. random variables such that
1, € {a,b) where —1 < a <0 and b > 0.
We assume that the following inequalities hold:

Pn,=e)>0 fort=1,...,T and ec {a,b}. (2.1)

It is easily seen that the price of the stock is positive at each moment.

We assume that 7, = a(n,, 1 <u<¢) fore=1,...,T.

For every t=0,...,T —1 and 0 € (a,b) let S’ be a random variable
defined as follows:

S (w) = (14 0)S,(w) for m € Q.

We assume that the bond earns interest with a constant rate » such that
a>—land 0 <r<b.

For transfers of wealth from one asset to another the proportional
transaction costs are paid in our model. For every t =0,...,T the cost of
buying one share of the stock at time ¢ is (1 4+ 1)S;, where 4 € [0, c0), and the
amount received for selling one share at time 7 is (1 — u)S;, with u € [0, 1).

Let p: R — R be a function defined as follows:

(Z)_{(l—i-i)z ifz>0
S\ (I—p)z ifz<0°

For any (q1,49>) € R? we define a set Cy,, ,,) as follows:

q1,92
C(Ql-,qz) = {(u,v) € R%: g1 —u+p(ga—v) <0}

A trading strategy (x, ) is a pair of processes {(x;,1,),t =0,...,T — 1} where
x;,y; are F, measurable for t =0,...,T — 1. Here, x;,), denote holdings (in
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cash) of bonds and shares of the stock respectively, held by the seller of the
option at time ¢ (after transaction at this moment) for t=0,...,7 — 1.
Moreover, for a strategy (x,y) let x_;,y_; € R denote respectively initial
holdings (in cash) of bonds and shares of the stock in a portfolio of the seller
of the option.

By convention we set S_; = Sj.

A trading strategy (x,y) is said to be self-financing if:

X0 —x-1+p00—y1) <0

and
Si
xi—(1+r)x_1+p Ve gV <0 for t=1,...,T—1
1
This means that at every trading moment, the sales must finance possible
purchase.

Denote by A the set of all self-financing, trading strategies.

If P(n,=a)+Pm,=b)=1for t=1,...,T and 0 < P(y,=b) <1 for
t=1,...,T then we have so called Cox-Ross-Rubinstein model. We will
denote such a model by CRR(a, b).

3 Some auxiliary results

Throughout this paper functions if not stated otherwise are defined on (0, c0),
measurable and take values in R.

Let p = (p1,p2) be a given pair of functions.

We define functions ¢, ; and ¢, as follows:

cpi(s) = [ljl_(:l +pa(s) and  cpa(s) = fl_(si + pa(s) forall s € (0,00).

Throughout this paper equalities and inequalities depending on s € (0, c0)
if not stated otherwise hold for all s € (0, 00).

Let the constant y be defined as follows:

y=(1+)(1+b)—(1—=w(+a).

It is easy to check that y > 0.

For simplicity of notation we write s’ instead of (1 + 0)s and s? instead of
(I4+9)(1+ 0)s.

We define functions 7, and /; as follows:

L(s) = (1 = w)(b— a)cpals”) = yepi(s*) + (14 a)(u+ ey (s)
and

Ij(s) = (1+2)(b—a)cp1(s”) — yepal(s?) + (1 +b) (1 + 2)cpa(s?).
Let IT denote the set of all pairs of functions p such that Ill (s) >0 and
(s) > 0forall s € (1 +a)’ 'Sy, (1+5)"'S).
Definition 3.1. Let (p1, p2) be a given pair of functions. We define by induction
pairs of functions p\) = ( 5i>,p§i)) for i € N\{0} as follows:

0 .
pj(- )(s) =pi(s) forj=1,2
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6 = S (1 by a6) = (1 -+ o)
(41 oy, ]

Dy . b
)Z) (S) - (1 —‘r)»,)(l +b)p1 (S)+ 1 +bcp('*)7l(s )

For all 0 € (a,b) we define functions L,* and L2 as follows:

L (s) = %((b —0)(1 — @epa(s) + ((1+ A)(1+0)

— (1= (1 +a))epi(s") = cpu(s”)
and
1
Ly(s) = ;(((1 + A1 +b) = (1 = @) (14 0))cpa(s”)
+ (0= a)(1+ 2)epi(s”)) = cpals”).
By ¥ we denote the set of all pairs of functions p such that p € IT and for

all 0 € (a,b) and s € (14 a)" 'Sy, (1 +b)"7'S,) the following inequalities
are satisfied:

L) (s)>0
lej’e(s) >0
-0 -0 2 0
(r— a)Lll;H(s) + (0 ; r) I; (s) > 0.

For all 6 € {a,b) and every t =0,..., T — 1 let

—(1+47) 1
ERETA <1 (S):

630 = { () € By > max

—(1+7) 1
T—pi+0 1+ OCP*Z(SIO)}}'

Moreover, let G, (1) = Gy()NGh(1) for t=0,...,T — 1.
It is clear that for all 6 € (a,b) and t =0,...,T — 1 the set Gj(¢) depends
on o € Q and consequently, the same holds for G,(¢).

Lemma 3.2. For all v € Q,0 € (a,b) and t=0,...,T — 1 we have the fol-
lowing equivalence:

G,(t)(w) C Gg(t)(co) if and only if L};O(S,(w)) >0 and L;’O(St(a))) >0.

Proof. We fix w € Q,0 € (a,b) and t € {0,...,T — 1} in this proof. More-
over, throughout this proof we omit the fixed w in the notation.
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Let,
—(1+7r) 1
E! = Ry > (
i {(x,y)E YEUr a0 T Tre
—(147r) 1
EY = R%:y > ( s9) +.
d—{ e Ry 2 U kel

It is casy to see that G, () C Gi(t) if and only if p()(S)) € Ee NEY.
Then by direct calculatlon we obtain for i = 1,2 that p B(S,) € EY if and
only if L’ "(S[) > 0, which completes the proof. O

cp1 (S } and

For simplicity of notation let

4 :(1+),)(l+r)—(1—u)(l+a) 3 :w
1 (I+7r)y » o (1+r)y
Az:w 32:<1+'1)(1+b)—(1—ﬂ)(1+r)
(I+r)y ’ (1+r)y ’
Moreover, for 0 € {a,b) let
1 (0) = (1+A)(1 +9);(1 - +a)7 5,(0) :W
az(g)zw’ ﬁz(g):(1+z)(1+b);(1_u)(1+0)_

By a standard calculation we have the following lemma:

Lemma 3.3. For i€ N\{0} we have cyi(s) = Aicyi 1(s") + Bicyi »(s*)

and Cp(n’z(s) = Ach(f—])‘rl(sb) + Bsz(i—l)ﬁz(Sa).

By Lemma 3.3 we obtain the following useful identities:

Lemma 3.4. For all 0 € {a,b),s € (0,00) and i € N\{0} we have L (s
AL () + BILY (57) = SR (7)) and L(s) = AzL“’ (s)+
B, (50) + A (),

2(1+47r)

Proof. We fix 0 € (a,b) and i € N\{0} in this proof.
Notice that:

By —A15,(0) = % (3.1)
B1(0)42 — Byaz(0) = d=ud (ﬁ?(:;v; Gy (3.2)
ﬁ (H)Bz _Blﬁz( ) (1 — )(1 +b)(:u+/1)(r7 9) (33)

(1+7r)y?
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Moreover, L;;fj () = o1 (0)cpn 1 (s°) + Br(0)cpn 2(s7) — cpn 1 (s7).
From Lemma 3.3 we have:

L,l,g( 5) = a1 (0)(A1cyi 1 (s”) + Bicyin 2 (™)) + B (0) (Aacyin 1 (s)
+ Bacyin 5(s™)) = (Aicyimn 1 () + Bicyin o(s").
Therefore, from (3.1), (3.2), (3.3) we obtain:
Lil,oo( 5) = A (o1 (0)ci0 1 (5™) + B (0)cyin 2(s™) — i 4 (s™))
+ Bl(“z(e)CPU—n,l(Sab) + Ba(0)cpi 2 (s™) = iy 2(s™))

B (i o6 + (14 2@ = Bl 5)
= (L4 D) (s A+ A)epimn o(s*))-
Consequently,
Lii(s) = ALyl (") + Bl (s°) —%ij(ﬂ).

The proof of the second identity is similar. Namely, we have:
A+ (1 +a)(0—r)(1+2)

O(z(@)A] — O(1A2 = (1 T }")“/2 (34)
I+ -wb—a)0—r)
0 (0)B1 — A2, (0) = T+ 7 (3.5)
(40
B>(0)4> — Bron(0) = BT (3.6)

Moreover, L7 (s) = o(0)e,01(s”) + Ba(0)cyn 2 (s) = 0 2(s”).
From Lemma 3.3 we obtain:

L;Zg(s) = “2(0)(1‘110},(,4)’1(&1’) + Bicyin, A (")) + ﬂz(e)(Ach(i,m(s“b)
+ Bacyi (™)) — (Aacyin 1 (s 0b) + Bacy U’z(soa)»
Using (3.4), (3.5), (3.6) we have:
szf’(s) = Aa (o1 (O)Cp“*‘),l (Sbb) + ﬁl(O)cp(,-,l)vz(sb“) - Cp(f—l),l(seb))

Pl
+ By (02(0)cpin 1 (s™) + Ba(0)cpin 2 (s™) — ¢y 2 (s"))

% ((2+ w1+ a)eyn 1 (5™)

+(1 - )(b — a)eyin o (™) = peyin 1 (s™)).

Consequently, L*{(s) = Ale 7 (s?) +BZL;£”(S“) + “:ﬁﬁf_f};” L (s”) and

the proof is completed O

From the proof of Lemma 3 in [6] we have the following fact:

Lemma 3.5. For i € N\{0} the functions I1 and ij satisfy the following
recursive identities:
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(l — :u) a
I,i(i) (s) = Al[;u—l)(sb) + ) Azljo—l)(s )

and ( )
2 1+/L
T ==

Concluding our technical results, we obtain:

Bl[1 (") +BZI;(,.,1)(S“).

Theorem36 Let p be a pair of functions such that pGT Then
L (ST,1)>0f0rallw€Q@€<ab>J€{l2}and1—0 -1

Proof: Let 0 € {a,b) be fixed in this proof.
We use a backward induction.
Let p be a given pair of functions. It is clear that,

LU0 (Sr1) >0

Ly (Sr-1) 20

6= nzh e - (s 2 0

0—r

(= (sr) + 20 (5r) 2 0

Assume that for some i € {0,...,7 — 2} we have
0
LII,(;) (ST7i71> >0
9
Lf,m (S7-i-1) > 0

(0—r)

(b - F)Lizf))(ST—i—l) - [pz(,-) (ST—i—l) 2 0

C

—r
(r - a)L:,(:Q) (ST*I'*I) + —)I;(i) (STfi—l) > 0.

We shall prove first that L;);fi” (Sr—i—2) > 0 and Lz"ﬂw (Sr_i2) > 0.

From the inequality (b —r)L 2;5)(5’7 i-1) — (9/ ) (Sr—i—1) > 0 and (2.1)

p<z>
we have (b— )L (S5, ,) -5 >12(>(saT 5) > 0.
Multiplying both sides of the last inequality by (1 S we obtain:

BlLf,Eg (S7_i-2) — %[pm ($7_i-2) = 0.

By the inequality Llf(ST i-1) >0 and (2.1) we have Alng,g(Sl} i) > 0.
Consequently,AlL DSt ) +B1L29(S% i) — %12,)(% .5)>0.

Therefore using Lemma 3.4 we get pr) (Sr—i—2) > 0.
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Now, from the inequality (r —a)L lgf)(ST i-1) —&—(Qy 0 (Sr—i—1) > 0 and
we have (r —a + 9 >
2.1) we h Ly (St <"/’)1;( Sb_.)>0.
Multiplying both sides of the last inequality by a +
A+HO=7) 1
Wlpm (Si2) 2 0.

By the inequality Lz;g(ST i—1) >0 and (2.1) we have Bsz’f(S? i2) > 0.
Consequently, Ale(f)(S’T’ i) +B2L2 (se ) +%11,)(S? ) >0.
Therefore using Lemma 3.4 we get L (M)(ST,,,Z) > 0.

We shall prove now that (b — r)L%" (S7_; 2) — (9;") 1§<;+1)(Sr—i—z) >0 and

i)
(r—a@)Lyiy (Sroi2) + 521 (Sroi2) > 0.

From the inequality (b —r)L ng)(ST_,»_l) - (0/ Y P(,) (Sr—i—1) > 0 and (2.1)

we have (b — )Bszg(.S# )= r)lez,)(S‘; ) >0.
By the 1nequahtyL (ST 1) > > Oand (2.1) we haveAzL (ST i2)
therefore (b_”)(AZLlo(S[% i)t BZLzO(SaT i2)) — - >B2Ij(:)(ST i-2)

From the identity (b — r) % = (0” )§1+))B we have

S we obtain:

1,0
A2Lp<:> (S?—i—z) +

0 and
0.

>
>

\_/

u 1+ 4)(0—r
- (ayiist w2l + 200 s )
0—r) ((1+4 u
4 . ) <E1 — #;Bll,iu) (S7—i-2) JFBZ[;U) (ST—i—2)> > 0.

Consequently, using Lemmas 3.4 and 3.5 we get:
0-7)p
(b—r) p<z+1)(ST i—2) —

Starting now from the inequality (r — a)L;gg (Sr—ic1) + (0;” 1;(,.) (Sr—i—1) > 0 by
(2.1) we obtain (r— @)Ly (s, ) + 52 A L, (S, ) > 0.
By the inequality L P(Sr_;1) >0 and (2.1) we have B1L f(sa_, ,)>0.

Consequently, (r— a)(AlLle(S’; ) FBIL (S )+ 54, 11 (S5_._,)>0.

(1-wo-n L 0-r) (1)
B G )

(z+])(ST —i— 2) > 0

Thus, using the identity (» Ay we obtdln

(r—a) (A]LIH(ST i 2)+BIL26( T—iz2) — (1;2(!?&[5(10(5?1'2))

+r
(0 ((1-p
T (a+mA

zgm%ig+A@M$[a)zo

Consequently, using Lemmas 3.4 and 3.5 we get:

(0—r)
7

(r— a)L,l,Eiu(STfifz) + Ill(,ﬂ)(Ser) > 0.
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The proof by backward induction is therefore completed. O

To study examples of options we need the following fact:

Remark 3.7. For any pair of functions p = (p1,p2) and all s € (0,00) the fol-
lowing identities hold:

“ 1
L) =2 06). L") =0,
1
Lf,’“(s) =0, le;b(s) = ;I;(s),

4 Hedging of the option

Let ¢ =(¢;,p,) be a given pair of functions. An option is a pair
(¢1(S7), 92(Sr)) of random variables where ¢,(Sr),®,(Sr) denote the
amounts of bonds and shares of the stock (in cash) respectively, that are paid
at time 7 to the option’s holder assuming that the holder of the option
exercises his claim. Throughout the paper we identify an option with the pay-
off pair of functions ¢.

An option in this paper will be also called a contingent claim or a
European option since the option’s holder can get his payment only at time 7.

It can be easily seen that for any option ¢ there exists a unique pair of
functions f,, = (fy,1, f,2) satisfying:

Clri)foats) = C10.0) N Cloy (s).0505)) For s € (0,00) (4.1)
and
f0.1(5) = 01()Lig () 9(5)>0 1 4+ 1t =0

Any strategy (x,y) € A of the option’s seller in order to assure the pay-
ment of the holder of the option ¢ has to satisfy the inequality:

S
@1(S7) = (L+r)xr_1 +p (%(ST) - #)’Tl) <0. (42)
Moreover, such a strategy also has to satisfy the inequality:
S
p(— STyT_l) < (14 r)xr (4.3)
T-1

which implies that the seller of the contingent claim can reach simultaneously
0 in the number of bonds and shares of the stock. In other words (4.3) means
that at time 7 the seller of the option can pay all his debts.

We say that a trading strategy (x,y) € A hedges a contingent claim
¢ = (¢, ®,) (or is a hedging against ¢) if:

S

Foa($0) = 1+ s+ (foaSr) = vrr) <0 (4.4
The last inequality is equivalent to the simultaneous holding of (4.2) and
(4.3).
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The inequality (4.4) implies that a trading strategy (x,y) € A hedges an
option ¢ if and only if it is possible using this strategy to assure the payments
J01(S7), fo2(Sr) in bonds and shares of the stock (in cash) respectively, at
time 7.

Forallwe Qand r=0,. — 1 we define a set H,(¢)(w) as follows:

H,(t)(w) = {(u,v) € R*: there exists (x,y) € A such that (x,_1,y—1)(w) =
(u, v) and P[f,1(Sr) — (1 + r)xr—1 + p(fp2(S1) — g5 yr-1) < 0] Fol(w) = 1}

H,(t) is a set of pre-transaction portfolios Wthh at time ¢ guarantee
hedging of the option ¢ at time T for every ¢t =0, . - 1.

Moreover, let Hy(T) = C(y, ,(s;)./,2(50))- 1t 18 clear that H,(T) is a set of
pre-transaction portfolios which at time 7 guarantee the payments
J01(ST), fo2(Sr) in bonds and shares of the stock (in cash) respectively, at
time 7.

For every 1 =0,...,T — 1 let H®®(¢) be defined in the same way as H,(7)
assuming additionally that P(n, = a) + P(n, =b) =l and 0 < P(y, = a) < 1
foru=t+1,...T

HCRR( ) is a set of pre-transaction portfolios which at time ¢ guarantee
hedglng of the contingent claim ¢ at time 7 if the stock price movement from
the moment ¢ until time 7 is the same as in the CRR(a, b) model.

The seller’s price of a contingent claim ¢ is defined by:

n(¢) = inf{xo + p(0), (x,y) € A and hedges ¢}

It is easily seen that H,(0) does not depend on w € Q and we have the
equality n(¢) = inf{x € R,(x, 0) € Hq,(O)}

Foreveryi=0,...,T let f; ﬂ’ = (f, q()i)l, fq) 2) denote a pair of functions which

is a result of the i- th 1terat10n of the operator from Definition 3.1 on the pair
of functions (f,1,/p2)-
By Theorem 1 of [10] we have the following fact:

Theorem 4.1. Let ¢ be an option such that f, € Il.

ThenHCRR() Cc foralla)GQandtf vy T =1,

(o (S0 5 (S
The main result is:

Theorem 4.2. Let ¢ be an option such that f, € V.

Then H,(t) = HS®(¢) for all o € Q and t = 0,...,T — 1.
Proof. From Theorem 3.6 we have L1 v , (S7) = 0 and szf—r—w (St) > 0 for
”»

all w e Q,0 € (a,b) and t =0, —1
Thus from Lemma 3.2 we have G (710 (1) C Eﬁ >G9(T,,,l (¢) forall w € Q
and 1t =0,. -1 It is easy to verify that fq,T t>(ST) € G ! (¢) for all
e and t = — 1. Consequently, we get:
=0y e N G (t) forall € Qandt =0,..., T — 1. (4.5)
¢ Oc(aby Jo

We use now a backward induction.
It is clear that H,(T) = C(/;,(,f]f(sr),/;(,?;(sr))'
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Assume that for some t =1,...,7 — 1 we have:

Hyt+1) = Cpronis, 705,00

Then, it is not difficult to check that , |<’1b> G;)_(T,,,n (t) CHy(t) forallw € Q.
€(a, @

Consequently, from (4.5) we get fé,ri[)(ST) € H,(t) for all ® € Q and

therefore it is easy to show that C(f“*’)(sr)f”*”(sr)) C Hy(t) for all w e Q.
0.1 Jo2

0.

Thus, by Theorem 4.1 we obtain HS®*(r) C H,(t) for all ® € Q.

From (2.1) we have H, (1) C HS®(z) for all w € Q. Consequently, we
obtain H,(t) = HS®™(z).

By backward induction we have H, (1) = HS®®(¢) for every t = 0,..., T — 1
and the proof is therefore completed. O

Remark 4.3.If pu=7.=0 then f,€¥Y if and only if =(¢p(s")+

P2(s*) + 522 (@1 (5") + @2(5") = (91 (5") + 92(s")) >0 for all ®e€Q,0
€ (a,b) and s € (1 +a)"'Sy, (1 + b)"7'S,).

Remark 4.4. [f we additionally assume that P(n, =0) >0 fort=1,...,T then
a set of pre-transaction portfolios that at a given moment guarantee hedging
of the option ¢ such that f, € ¥ is the same as the analogous set for the
American version of this option (pricing of the American option is considered

eg.in[7]).

4.1 Examples

The following fact is useful to check that for the options described later
Theorem 4.2 holds:

Lemma 4.5. Let o € {(a,b) and let h be a continuous function defined on (a, b) as
follows:

) 00+ B, if 0€ (a,d)
w0+ B, if0€(5,b)

where o, f; € R for i € {1,2} and o) > oy.
Then, ei?fb>h(9) > 0 if and only if min{A(a), h(b)} > 0.
c({a,

4.1.1 The European call option with delivery

We assume in this example that g+ 4 > 0.

The holder of the option has the right to buy one unit of the stock for the
price K at time 7.

We have ¢,(s) = —K and ¢,(s) = s.
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The pair f,, is given as follows:

-K if s > ﬁ
e 1—
Jor($) = LK — (1+2)s) i £ <5 <&
otherwise
s if s 2 K
=14, K K
So2(5) ﬁﬂs ~ Ttn if 47 < < T-x
0 otherwise
It is easy to calculate that ¢z, 1(s) = (s —55)" and cf,1(s) = (s—%ﬂ)*.

Moreover, it is not difficult to prove the following fact:
Proposition 4.6. For the European call option with delivery we have f,, € Il.

For all s € (0,00) let h;s and his be measurable and taking values in R
functions defined on (a, b) as follows:

40 = 100 forall 0 (08 and i < 1.2

Lets e <(1 +a) 1S, (1 + b)T_1S0> It is easy to check that the functions

h* and h2° satisfy the assumptions of Lemma 4.5. Moreover, from Remark 3.7
and Proposition 4.6 we have A" ‘( ) >0 and A" “( ) >0 for i € {1,2}. Conse-

quently, from Lemma 4.5 we have Lf (s)>0 and L ( ) > 0forall 0 € (a,b).

For all s € (0,00) let hl * and Z?g be measurable and taking values in R
functions defined on (a, > as follows:

0—r
C0n

hg'(0) = (r = )Ly (s) +
and

724(0) = (b — NE2(s) - (9;%@)

for all 0 € (a,b).
Let s € ((1+a)" 'Sy, (14 b)"7'S,). It is easy to notice that the functions

h’ ¥ for i = 1,2 satisfy the assumptlons of Lemma 4.5. Moreover, from Re-
mark 3.7 and Proposition 4.6 we have 4’ Y( ) > 0and 1" ‘(b) >0forie{l1,2}.
Therefore from Lemma 4.5 we have (b— r)LiﬂH(s) ® ;") Ifw (s)>0 and
(r—a)Ly(s) + %21} (s) > 0 for all 0 € (a,b).

Consequently, by Theorem 4.2 for the European call option with delivery
we obtain H, (1) = HS® (1) for t =0,...,T — 1.

4.1.2 The European call option with cash settlement:

We have ¢,(s) = (s — K)" and ¢,(s) = 0.

It is easy to see that ¢ = f,.

We assume in this example that (1 — u)(1 +5) > (1 + A)(1 +r).

It is not difficult to check that H,(T — 1) = Cy,(s;_,)¢.(s;_1)) Where g1 and
g» are the functions defined as follows:
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(1’+If) if s > L
gi(s) = WEB (1 4 a) if K <5 < K
otherwise
ﬁ if s > 1§a
— ! ((1+b)s—K)
gas) = § LB i K0 < 5 < K
0 otherwise

It is easy to check that H, (T — 1) = HS®*(T - 1).
Let g = (g1,92). It is not difficult to prove the following fact:

Proposition 4.7. For the pair of functions g = (g1,9>) defined above we have
g €Il

Stepping in the same manner as in the case of the European call option
with delivery with Proposition 4.6 replaced with Proposition 4.7 we get:

1,0
L;7(s) >0

LY(s)>0
(b—r)L2"(s) — 0 ; r) I(s) >0
(r— a)L;’H(s) + @I; (s)>0

for all 0 € (a,b) and s € (1 +a)" 'Sy, (1 + b)"7'S,).
Therefore, by Theorem 4.2 with a new last time 7 — 1 instead of 7 we
obtain H,(1) = HS®*(¢) for 1 =0,...,T — 2.

4.2 Hedging in a generalized model

In this subsection we assume a general Q which doesn’t have to be finite.
Moreover, from now on we assume that the stock price dynamics instead of
(2.1) satisfies the following weaker assumption:

Assumption 4.8. P(n, ., <a+¢) > 0and P(y,,, >b—¢) >0 forall ¢ >0 and
t=0,..,7—1.

Foralle >0and¢=0,...,7 — 1 let A denote a set of all sequences of real
numbers {d,},_, ., such that 0 <0, <eforn= L., T—t
For all £>0t—0 T—1 and 6 € A} let ng&<) be defined in the

same way as H,(t) assumlng in addition that’ P,y =a+ 0y t+1)+
P(T’,t+1:b75u,[+l)—l and O<P(T1u+1—b bu [+])<1 for M—t
T—-1.

For every t =0,...,7 — 1 we have:

Lemma 4.9. If f,, 1 and f,, 5 are continuous then H,(t) € HS®(t) for all » € Q.
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Proof. Let o € Q be fixed in this proof.

Assume that (u,v) € H,(¢). From Assumption 4.8 it is not difficult to show
that for all ¢ > 0 there exists a sequence 6 € A such that (u,v) € HS 5( t). Since
we can take e arbitrarily close to 0 and fq, 1, o2 are contlnuous we get
(u,v) € HJFR(2).

Consequently, H, (1) € HS®® (1) and the proof is therefore completed. [J

In our generalized model, we have the following theorem which is similar
to Theorem 4.2:

Theorem 4.10. Let ¢ be an option such that f, € ¥ andf(/, 1,f(/, 2 are continuous

Sfunctions. Then H,(t) = HCRR( t) for all w € Q and t = ST —1.
Proof. It is clear that H,(T) = C(fm)(Sr)lﬁ(O)(Sr))‘

Assume that for some ¢t = 1, — 1 we have:

Holt 4 1) = Clpiren o 00

Following the lines of the proof of Theorem 4.2 we get HS®* (1) C H, (1)
for all @ € Q. From Lemma 4.9 we have H, (1) C HS®*(r) for all € Q. In
consequence, we obtain H, (1) = HS®*(z).

By backward induction we get H o(t) = HS® (1), for every t =0,..., T — 1
which completes the proof. O
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